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A New Catalytic Route to Boryl- and Borylsilyl-Substituted Buta-1,3-dienes
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Abstract: Vinyl-substituted boronates
in the presence of complexes contain-
ing Ru—H bonds (preferably
[Ru(CO)CIH(PCys),], Cy: cyclohexyl)
react regioselectively with terminal
ethynes (involving silylethynes), albeit
with the exception of phenylacetylene,
to produce boryl- and borylsilyl-substi-
tuted buta-1,3-dienes with a preference

new catalytic route for the preparation
of dienylboronates, and particularly di-
enylsilylboronates, that are functional-
ised building blocks in the synthesis of
organic and natural products. The
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mechanism of this new reaction was
proved to involve an insertion of
alkyne into Ru—H bonds followed by
an insertion of coordinated vinyl boro-
nate into the Ru—C= bond and f-hy-
drogen transfer to the metal to elimi-
nate boryldiene or borylsilyldiene.

for E,E-diene. The reaction opens a

Introduction

The well-known transition-metal (TM)-catalysed reactions
(developed by our group) of vinyl-substituted metalloid
(E=Si, Ge, B) compounds with olefins, called silylative cou-
pling (trans-silylation), trans-germylation and trans-boryla-
tion, respectively, are based on the activation of the =C—E
bond and =C—H bonds of olefins in the presence of M—H
and M—E catalysts [M =metal; see Eq. (1)].l'*
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This process was recently extended to the activation of sp-
hybridised C—H bonds in reaction with vinyl-silicon and

-germanium compounds [Eq. (2)].1*%
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E=Si Ge @
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The reactions are widely recognised as efficient catalytic ac-
tivations of =C—H, =C—H and =C—E bonds of a vinylmetal-
loid with evolution of ethylene. The mechanisms of these re-
actions involve the insertion of vinyl-E into the TM—H
bond and B-hydrogen transfer to the metal with elimination
of ethylene and generation of the TM—E bond. This is fol-
lowed by the insertion of alkene or alkyne into the TM—E
bond and P-hydrogen transfer to the metal to eliminate
silyl-, germyl- or borylethene, or the substituted silyl- or ger-
mylethyne, respectively. The latter step is directly responsi-
ble for metallative coupling of olefins and acetylenes.!"

In recent years, several applications of alkynyl, alkenyl
and dienyl boron derivatives have been developed as func-
tionalised building blocks in the synthesis of organic and
natural products.®” This fact has made this topic a growing
and steadily more appealing field of research.

Therefore, analogously to organosilicon and germanium
derivatives, we used vinylboronates in reaction with terminal
acetylenes catalysed by [Ru]—H complexes, but, unexpected-
ly, instead of boryl-substituted ethynes, boryl-functionalised
buta-1,3-dienes were obtained in very good yields with high
regioselectivity.

Dienylboronates and particularly dienylsilylboronates
constitute a class of functionalised building blocks common-
ly used in the synthesis of organic and natural products, as
the boronate moiety (as well as the silyl group) can be
easily converted into other functional groups (see
Scheme 1).%7

Simultaneous unsymmetrical functionalisation of buta-1,3-
dienes with boryl and silyl groups opens the possibility for
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Scheme 1. Potential applications of borylsilyl-substituted buta-1,3-dienes.

selective replacement of one of these groups with retention
of the other and the use of the latter in the further function-
alisation in a different process.

n—n conjugated C=C bonds occur often in natural polyen-
ic compounds, which exhibit significant biological activity.
Indeed, a number of them have found clinical utility as
drugs and antibacterial and antifungal compounds.[®”!

Boryl-substituted 1,3-dienes can be prepared by classic
stoichiometric routes using or-
ganometallic reagents!''l or

plexes containing the Ru—H
bond.

Results and Discussion

The reaction, catalysed by
[Ru(CO)CIH(PCys),] (I: Cy:
cyclohexyl), [Ru(CO)CIH-
(PiPr;),] (I) or cationic
[Ru(CO)CIH(MeCN,)(PCys),]-
[BF,] (III), is a convenient new
method for selective synthesis
of 1-boryl- and 1-silyl-4-boryl-
substituted buta-1,3-dienes
[(@)+(b)], sometimes accom-
panied by traces of ethyne di-
merisation (¢) and/or vinylbor-
onate homocoupling (d) [see
Eq. (3) and Table 1].

Most of the reactions exam-
ined here proceed with high
conversion of acetylene (quan-
titatively under optimal condi-
tions) and in very good yields
to give predominantly E,E-1,3-
diene (a) accompanied by one E,Z isomer (b). Although vi-
nylborane has to be used in excess, its homocoupling® has
been practically insignificant in this reaction. On the other
hand, dimerisation of acetylene has been observed, but in
the presence of most catalysts used, only as a side reaction
affording traces of byproducts (c). A threefold excess of vi-
nylborane over acetylene was tested as the optimum
amount for the co-dimerisation process to reduce acetylene

Table 1. Co-dimerisation of terminal acetylenes with 2-vinyl-1,3-dioxaborinane (A).

by more recently applied cata-

Conversion [% ]!

Selectivity a/b/c/d [%]"  Isolated yield ~Product no.l!

of (a) [%]

lytic methods, such as hydrobo- Entry =R Cat
ration of enynes,'? cross-cou-
pling of 1,1-diborylated al- 1 }Q ¢
kenes with alkenyl halides™ 1o
Heck coupling of vinylboro- 3 I
nate with vinylarylic iodid- 4 e
es,’>1 as well as cross-meta- 2 ‘I)[IC]
thesis of vinylboronates with .
1,3-dienes.”! Additionally, si- ’ f@ LIV
lylboryl-substituted dienes can 8 i
be synthesised by means of 9 — QTMS .
nickel-catalysed silaborative di-
merisation of alkynes.!*! 0 :ﬁ<:> |
Herein we report a new cat- TMSO
11 = Gt I

alytic transformation of vinyl-
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substituted boronates with se-
lected terminal ethynes (also
silylethynes) occurring in the
presence of ruthenium com-
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[a] Reaction conditions unless otherwise stated: [Ru]/[acetylene]/[borane]=2x107%:1:3; open system, toluene
(0.5m), t=18h, T=80°C. [b] [Ru]/[acetylene]/[borane]=10"%1:3. [c] Dichloroethane (0.5M) as a solvent.
[d] Catalyst: [Ru(CO)CIH(PCys),] (I), [Ru(CO)CIH(PiPr;),] (II), [Ru(CO)H(MeCN,)(PCy;),|[BF,] (III),
[Ru(CO)CIH(PPh;);] (IV), [RuCl(PCy;)(p-cymene)]OTf (V). [e] Substituted acetylene conversion; deter-
mined by GC analysis. [f] Determined by GC analysis and 'H NMR spectroscopy. [g] See the Experimental
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dimerisation, as well as homocoupling of vinylboronate.
However, when six-coordinated [RuCO(CI)H(PPh;);] (IV)
is used as the initial catalyst, then dimerisation of acetylene
is a major reaction.

In our research we observed that the co-dimerisation re-
action with vinylboronates occurred not only for terminal
organic acetylenes, but also for alkynylsilanes (see Table 2).
Triethylgermylacetylene was also tested in the reaction with
2-vinyl-1,3-dioxaborinane, but its homocoupling played, in
this case, a significant role (see Table 2).

Optimisation of the synthesis parameters was carried out
for the reaction of triethylsilylacetylene with 2-vinyl-1,3-di-
oxaborinane. The best results (the highest yield and selectiv-
ity) were observed for the reaction carried out at 80°C for
18 h and at a threefold excess of borane compound (see
Table 2). A fivefold excess of boronate over acetylene in-
creased the contribution of the side reaction of vinylboro-
nate homocoupling.

Table 2. Co-dimerisation of terminal silylacetylenes and triethylgermylacetylene with 2-vinyl-1,3-dioxabori-
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Similarly to the previously described trans-metalation re-
actions of vinylmetalloid with olefins and acetylenes®>' (for
a review see ref. [1]), [Ru(CO)CIH(PCy,),] (IV) was the
most effective and selective catalyst for this process.

Application of 2-vinyl-1,3-dioxaborolane as a reagent in
the reactions with terminal silyl and organic acetylenes with
the optimal process parameters gives boryl- and borylsilyl-
substituted dienes also with good yields and selectivity com-
parable to the reactions with 2-vinyl-1,3-dioxaborinane (see
Table 3).

Our separate study of the reaction of equimolar amounts
of the ruthenium-boryl complex [Ru(BO,C¢H,)(CO)CI-
(PCy;),] (VI) and silylacetylene monitored by 'HNMR
spectroscopy and GC-MS reveals that the insertion of acety-
lene into the Ru—B bond occurs to a very low degree (silyl-
boryl-substituted ethyne is not observed in the GC-MS
spectrum and only traces of regenerated Ru—H bond (triplet
at 0=—24.3 ppm) were detected by 'H NMR spectroscopy).
This is the reason why contrary
to vinylsilane™ and vinylger-

fal
nane (A). : mane,” the metalation of acet-
Entry =R Catl! T Conversion Selectivity a/b/c/d Is.olated Product ylene with vinylboronate was
[cC]  [%]® [%]™ yield no.!! .
of (a) [%] not observed during the cata-

— = - lytic process. Instead, the co-
1 = SiE, ) 80 88 80/13/7/traces di .. ¢ vinvlb
2 I 80 98 84/16/traces/traces 78 5 l_mensatlon o . vinylboronate
3 I 83 82/18/traces/traces with most terminal acetylenes
4 I 80 99 78/14/0/8 (except phenylacetylene) was
2 I 2(; ;(5) zzﬁgtraces;traces noted.

I ( traces/traces . .

7 1 100 100 70/15/15/0 It is well re.:cogmsed that
8 1 80 91 80/20/0/traces ruthenium-hydride complexes
9 mr? 80 54 72/28/0/0 react with terminal acetylenes
10 1\[’] 80 73 12/7/81/0 very smoothly at room temper-
11 — s v 80 35 0/0/100/0 ature (with phenylacetylene
12 == Si(iPr), 1 100 83/17/traces/traces 79 6 . . :
13 = SiMe,)Bu | 100 84/16/0/0 31 7 reaction occurred immediately
14 =—Ssi(Me,Ph | 94 90/10/0/traces 79 8 even at —20°C) to form the vi-
15 = SiMe, 1 43 40/5/55/0 9 nylphenylruthenium com-

= GeE .
16 SFt, I 88 44/14/21/23 10 plex*!”¥ according to Equa-
[a] Reaction conditions unless otherwise stated: [Ru]/[acetylene]/[borane] =2 x 1072:1:3; open system, toluene tion (4).

(0.5m), t=18h. [b] [Ru]/[acetylene]/[borane]=2x1072:1:2. [c] [Ru]/[acetylene]/[borane]=102:1:3. [d] [Ru]/
[acetylene]/[borane] =2 x 107%:1:5. [e] Dichloroethane (0.5M) as a solvent. [f] Catalyst: [Ru(CO)CIH(PCys),]
(1), [Ru(CO)CIH(PiPr3),] (II), [Ru(CO)H(MeCN,)(PCy;),|[BF,] (Il), [Ru(CO)CIH(PPh;);] (IV), [RuCl-
(PCy;)(p-cymene)|OTt (V). [g] Substituted acetylene conversion; determined by GC analysis. [h] Determined
by GC analysis and "H NMR spectroscopy. [i] See the Experimental Section.
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fore well known as catalysts of
acetylene dimerisation occur-
ring by means of insertion of
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Table 3. Co-dimerisation of terminal acetylenes with 2-vinyl-1,3-dioxaborolane (B).

onate was added to the reac-

Entry =R Conversion [%]®  Selectivity a/b/c/d [% ]9 Isolated yield of (a) [%] Product no.  tion mixture. The [Ru]-H
1 =—SiEt, 95lal 83/14/3/0 71 1 complex was monitored after
2 =—si(Pr, o 86/14/0/0 12 24h (by 'HNMR spectrosco-
3 = SiMe,)iBu g4 83/17/traces/0 74 13 py), whereas borylsilyl-substi-
4 i—gngph 88 75/25/0/0 63 14 tuted dienes (yield 47 %) were
5 :—'—\ 78 70/30/traces/0 15 monitored by GC-MS analy-

ses. Reduction of the reso-
6 Tﬁso 73 89/11/0/0 16 nance line characteristic of vi-

nylene-ruthenium complexes
7 = 96 82/18/0/0 17

and the appearance of new

[a] Reaction conditions unless otherwise stated: [Ru(CO)CIH(PCy,),]/[acetylene]/[borane] =2 x 107%:1:3; open
system, toluene (0.5m), r=18h, T=80°C. [b] Substituted acetylene conversion; determined by GC analysis.
[c] Determined by GC analysis and '"H NMR spectroscopy. [d] See the Experimental Section.
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the second molecule of acetylene into the Ru—vinyl complex
and were also observed in an experiment with [Ru(CO)CIH-
(PPh;);] (IV) used as the initial
catalyst.

To check why the reaction
of vinylboronates with termi-
nal acetylenes occurs different-
ly from those with vinylsilanes
and vinylgermanes, as well as
to identify the mechanism of
the co-dimerisation process,
we carried out stoichiometric
reactions of ruthenium hydride
complex [Ru(CO)CIH(PCys;),]
(I) with silylacetylene and vi-
nylboronate.

The first step leads to the
synthesis of a vinylene rutheni-
um complex (two doublets at
0=5.62-5.66 and 8.80-
8.85 ppm) [see Eq. (5) and Fig-
ure 1a]. |

lines typical of olefinic protons
also proved the co-dimerisa-
tion route (Figure 1b).

During stoichiometric pro-
cesses we also observed evolu-
tion of ethylene (singlet at 0=>5.25ppm) in the 'H NMR
spectrum. We can explain this fact by formation of the Ru—
B complex followed by insertion of the vinylboronate used
in excess to the regenerated (after elimination of borylsilyl-
substituted buta-1,3-diene) Ru—H complex [see Eq. (6)].
Bis(boryl)ethene as a product of vinylboronate homocou-

-
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The reaction was carried out . ‘ .
for 24 h. After the total disap-
pearance of the Ru—H bond
(triplet at 0 =—24.3 ppm), the
equimolar amount of vinylbor-

8/ ppm

24 h.
PCy PCy, H

ocC, | 7" oc, |~

JuH o+ =—siey [Dyjtoluene Ru

T=130°C, t=24h
cl PCy, Cl PCy,
H

Molar

ratio [Ru-H]/[silylacetylene]/[borane] =1:1.5: 1.6
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Figure 1. a) "H NMR spectrum of silylvinylene ruthenium complex generated in situ; b) 'H NMR spectrum of
the stoichiometric reaction of silylvinylene ruthenium complex with 2-vinyl-1,3-dioxaborolane, monitored after
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pling is also observed in the GC-MS spectrum (for detailed
experiments of vinylborane homocoupling see ref. [3]).

The above-described experiment provides convincing evi-
dence for the mechanism of the new catalytic reaction oc-
curring in the presence of [Ru(CO)CIH(PCys),] (I) (see
Scheme 2).

[Ru(CO)CIH(PCys,).]

+PCy, (argon) -PCy, (argon)

| [RU(CO)CIH(PCy,)]

| \<
R
(PCy;XCO)CIRu H
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H |
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H
—B

\

R = SiRy, CgHyy CsH \CL QTS
= Olg, LgMyq, Gy, ’
! otms!

Scheme 2. Mechanism of co-dimerisation of terminal acetylene (silylacet-
ylene) with vinylboronates.

The crucial point of this mechanism (contrary to that es-
tablished in vinylsilane and vinylgermane) is the fact that re-
action of Ru—H with vinylboronate does not compete with
that with acetylene. The latter is preferred in this case to
yield the Ru—vinylene complex (instead of Ru-—silyl and
Ru—germyl complexes, which are preferred in the previous
systems**!) directly responsible for the final step yielding
co-dimerisation products.

The co-dimerisation process of inactivated olefins with
terminal acetylenes, such as phenyl and cyclohexyl, was pre-
viously reported to be catalysed by the cationic ruthenium
complex [RuCp(PPh;),Py] (generated in situ; Cp: cyclopen-
tadienyl) to yield a mixture of E,E- and E,gem-dienes
(100°C, 10 h, NaPF, pyridine), but neither boryl nor silyl
compounds were studied. Our experiments on the reaction
of vinylboronate with phenyl-, cyclohexyl- and triethylsilyl-
acetylene carried out in the presence of cationic complex
[RuCl(p-cymene)(PCy;)][OTf] (V; OTf: trifluoromethane-
sulfonate) show the exclusive presence of the products of

Chem. Eur. J. 2008, 14, 6679 —6686
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acetylene dimerisation (see Tables 1 and 2). The mechanism
of the reaction was proposed to involve the ruthenium vinyl-
idene complex as an active intermediate responsible for this
catalytic process.”

Conclusion

We have developed a new catalytic route for the efficient
coupling of vinylboronates with terminal alkynes involving
silylacetylenes (except phenylacetylenes) catalysed by ruthe-
nium complexes containing a Ru—H bond. This leads to
boryl- and borylsilyl-substituted buta-1,3-dienes in high
yield with a preference for the E,E-diene. It is worth noting
that we have established the optimal reaction parameters to
obtain the target compound without any byproducts.

Experimental Section

General methods: 'H (300 MHz), “C (75 MHz), ¥Si (79 MHz) and
YBNMR (96 MHz) spectra were recorded by using a Varian XL
300 MHz spectrometer with samples in a solution of CDCl; or
[Dg]toluene (C4D5sCD;). Chemical shifts are reported in ppm with refer-
ence to the residue portion solvent (CH;Cl) peak for 'H and “C, to TMS
for Si and to BF;-Et,0 for "B. Analytical GC analyses were performed
by using a Varian Star 400CX with a DB-5 fused-silica capillary column
(30 mx0.15 mm) and thermal-conductivity detector (TCD). Mass spectra
of the substrates and products were obtained by GC-MS analysis (Var-
ianSaturn 2100T, equipped with a BD-5 capillary column (30 m) and an
ion-trap detector). Elemental analyses were carried out by using a Vario
EL III system and high-resolution (HR) MS analyses were performed by
using an AMD-402 instrument. Thin-layer chromatography (TLC) was
carried out by using plates coated with 250 um-thick silica gel (Aldrich
and Merck), and the column chromatography was performed by using
silica gel 60 (70-230 mesh; Fluka). Toluene was dried by distillation using
sodium and hexane from sodium hydride. Liquid substrates were also
dried and degassed by using bulb-to-bulb distillation. All of the reactions
were carried out under a dry argon atmosphere. The chemicals were ob-
tained from the following sources: toluene, dodecane and hexane were
purchased from Fluka; ethyl acetate from POCH; CDCl; and C,DsCD;
from Dr. Glaser, A.G. Basel. The substituted acetylene was bought from
Aldrich. 2-Vinyl-1,3-dioxaborolane and 2-vinyl-1,3-dioxaborinane were
synthesised according to the literature with some modifications.?*?!! The
ruthenium complexes I-VI were prepared according to the litera-
ture.[3.22—25]

Representative experimental procedure for synthesis of boryl- and boryl-
silyl-substituted buta-1,3-diene: In a typical test, the ruthenium catalyst I
(2 mol %) was dissolved in toluene and placed in a glass ampoule under
an argon atmosphere. The reagents and dodecane as internal standard
(all components 5% by volume), acetylene and vinylborane (usually
used in the molar ratio [Ru]/[acetylene]/[vinylborane] 2x1072:1:3) were
added. Subsequently, the ampoule was heated to 80-90°C and main-
tained at that temperature for 24 h. The progress of the reaction was
monitored by GC and GC-MS analyses. The conversion and chemoselec-
tivity of the reactions and yields were calculated by using the internal

www.chemeurj.org — 6683
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standard method. The final products were separated from the residues of
the catalyst and reactants by purification using a silica gel column with
hexane/ethyl acetate (1:1) as eluent. All products of catalytic transforma-
tion of terminal alkynes with vinylboronates were pale yellow oily lig-
uids.

Experimental procedure for stoichiometric reaction: Complex I (0.01 g,
0.012 mmol), triethylsilylacetylene (0.01 g, 0.018 mmol) and [Dg]toluene
(0.6 mL) were placed in an NMR tube under an argon atmosphere. The
reaction was carried out at 100°C and after disappearance of Ru—H and
appearance of Ru—~CH=CH-SiEt,; bonds (monitored by 'H NMR spec-
tra), 2-vinyl-[1,3,2]dioxaborinane (0.019 mmol) was added and the course
of the reaction was monitored by using '"H NMR spectroscopy.

Syntheses

(1E,3E)-1-(1',3'-Dioxaborinan-2'-yl)-4-cyclohexylbuta-1,3-diene (1): Com-
plex I (0.015 g, 0.02 mmol), toluene (1 mL), 1-ethynylcyclohexane (0.11 g,
1 mmol) and 2-vinyl-1,3-dioxaborinane (0.34 g, 3 mmol) were placed in a
glass ampoule and heated under an argon atmosphere at 80°C for 18 h.
Then the excess of borane and solvent were removed under vacuum and
the crude product was separated from the residues of the catalyst and re-
actants using a column of silica gel (hexane/ethyl acetate 1:1) to afford 1
as a pale yellow liquid (0.163 g, 0.740 mmol, 74% isolated yield).
"H NMR (300 MHz, CDCl;, 25°C): 6 =0.85 (t, 4H; C4H,,), 1.25 (br, 2H;
CeH ), 1.69 (br, 4H; C.H,;), 0.83-1.65 (brm, 10H; C¢H};), 1.30 (s, 3H;
CCH;), 1.96 (quintet, J(H,H)=5.5 Hz, 2H; BOCH,CH,CH,0), 4.03 (t, J-
(H.H)=5.5Hz, 4H; BOCH,), 5.33 (d, J(HH)=17.6 Hz, 1H; B—CH=
CH), 5.78 (d, J(HH)=15.4 Hz, 1H; -CH=CH-C), 6.07 (dd, J(H.H)=
9.9, 154 Hz, 1H; —CH=CH—C), 6.89 ppm (dd, J(H,H)=10.2, 17.6 Hz,
1H; B-CH=CH-); "CNMR (75 MHz, CDCl,;, 25°C): 6=25.91 (3,5
CsHs), 26.1 (4-C¢Hs), 27.4 (BOCH,CH,), 32.5 (2,6-C4Hs), 40.7 (1-C4Hs),
62.7 (BOCH,CH,), 129.8 (CH=CH—C), 1442 (CH=CHC), 148.1 ppm
(B-CH=CH); C, to boron atom is not observed; "B NMR (96 MHz,
CDCJ, 25°C, BF;—Et,0): 6=27.6 ppm; MS (EI): m/z: 220 (49) [M*], 205
(11), 177 (32), 164 (61), 151 (7), 138 (17), 121 (69), 110 (28), 105 (43), 91
(54), 79 (100), 67 (54); HRMS: m/z caled for CsH,BO, [M]: 220.16347;
found: 220.16193.
(1E,3E)-1-(1',3'-Dioxaborinan-2'-yl)-5-methyl-5-trimethylsiloxyhepta-1,3-
diene (2): Compound 2 was prepared from the appropriate starting mate-
rials according to the above procedure for 1. The reaction afforded 2 as a
colourless liquid (0.186 g, 0.659 mmol, 66% isolated yield). 'H NMR
(300 MHz, CDCl,;, 25°C): 6=0.09 (s, 9H; OSi—(CH,;);), 0.81 (t, 3H;
CCH,CHs;), 1.30 (s, 3H; CCH,), 1.51 (quartet, 2H; CCHj;), 1.97 (quintet,
J(H,H)=5.5Hz, 2H; BOCH,CH,CH,0), 4.04 (t, JHH)=5.5Hz, 4H;
BOCH,), 5.43 (d, J(H,H)=17.3 Hz, 1H; B-CH=CH), 5.83 (d, J(H.H)=
15.4 Hz, 1H; —-CH=CH-C), 6.17 (dd, J(H,H)=10.4, 154 Hz, 1H; —CH=
CH-C), 6.90ppm (dd, J(HH)=104, 17.6 Hz, 1H; B-CH=CH-);
BCNMR (75MHz, CDCl;, 25°C): 0=2.48 (OSi—(CHj);), 8.39
(CCH,CH,), 26.84 (CCHs;), 27.39 (BOCH,CH,), 36.35 (CCH,CHs;), 61.75
(BOCH,CH,), 75.82 (CCH,CH;), 129.59 (C—CH=CH-), 144.22 (B—CH=
CH-), 147.20 ppm (C—CH=CH-); C, to boron atom is not observed in
BCNMR spectrum; "B NMR (96 MHz, CDCl;, 25°C, BF,—Et,0): 6=
27.7 ppm; MS (EI): m/z (%): 282 (11) [M*], 267 (11), 253 (97), 193 (16),
183 (19), 159 (58), 145 (6), 131 (26), 117 (29), 105 (16), 93 (35), 73 (100),
59 (7); HRMS: m/z caled for C;sH,BO,Si [MT]: 282.18225; found:
282.18308.
(1E,3E)-1-(1',3’-Dioxaborinan-2'-yl)-4-(1”-trimethylsiloxycyclohex-1"-
yl)buta-1,3-diene (3): Compound 3 was prepared from the appropriate
starting materials according to the above procedure for 1. The reaction
afforded 3 as a colourless liquid (0.216 g, 0.700 mmol, 70% isolated
yield). '"H NMR (300 MHz, CDCls, 25°C): 6=0.07 (s, 9H; OSi—(CH),),
0.83-1.65 (brm, 10H; C¢H,,), 1.30 (s, 3H; CCH,), 1.97 (quintet, J(H,H) =
5.5 Hz, 2H; BOCH,CH,CH,0), 4.04 (t, J(HH)=5.5 Hz, 4H; BOCH,),
5.44 (d, J(HH)=17.6 Hz), 1H; B—-CH=CH), 5.90 (d, J(H.H)=15.4 Hz,
1H; -CH=CH-C), 6.18 (dd, J(H.H)=10.2, 15.7 Hz, 1H; -CH=CH—C),
6.89 ppm (dd, J(HH)=102, 17.6Hz, 1H; B—CH=CH-); “CNMR
(75 MHz, CDCl;, 25°C): 0=2.57 (OSi—(CH,);), 22.28 (3,5-CsH,), 25.72
(4-CH,), 2739 (BOCH,CH,), 3835 (2,6-CH,,), 61.76 (BOCH,CH,),
74.07 (1-CH,,), 130 (C—CH=CH), 144.18 (B—CH=CH-), 147.32 ppm
(C—CH=CH-); C, to boron atom is not observed in *C NMR spectrum;
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"B NMR (96 MHz, CDCl, 25°C, BF;~Et,0): 6=27.5 ppm; MS (EI): m/z
(%): 308 (7) [M*], 293 (9), 279 (5), 265 (35), 251 (16), 238 (5), 209 (11),
193 (28), 167 (25), 159 (24), 134 (38), 119 (49), 105 (29), 91 (95), 73 (100),
59 (9); HRMS: m/z caled for C;sH,BO,Si [M*]: 272.14038; found:
272.13880.

2-[(1E,3E)-Nona-1,3-dienyl]-1,3-dioxaborinane (4): MS (EI): m/z (%):
208 (43) [M*], 193 (11), 179 (23), 165 (47), 151 (27), 138 (27), 123 (13),
110 (30), 93 (57), 79 (100), 67 (54), 53 (13).
(1E,3E)-1-Triethylsilyl-4-(1',3'-dioxaborinan-2'-yl)buta-1,3-diene 5):
Compound 5 was prepared from the appropriate starting materials ac-
cording to the above procedure for 1. The reaction afforded 5 as a pale
yellow liquid (0.196g, 0.77 mmol, 78% isolated yield). 'H NMR
(300 MHz, CDCl;, 25°C): 6=0.59 (quartet, J(H,H)=7.9 Hz, 6H; Si—
CH,—CH3;), 0.92 (t, J(H,H)=8.0 Hz, 9H; Si—~CH,—CH,), 1.97 (quintet, J-
(H,H)=5.5Hz, 2H; BOCH,CH,CH,0), 4.04 (t, J(HH)=5.5Hz, 4H;
BOCH,), 5.44 (d, J(HH)=17.3 Hz, 1H; B-CH=CH), 5.98 (d, J(H.H)=
18.4 Hz, 1H; —CH=CH-SIi), 6.58 (dd, J(H,H)=10.2, 18.4 Hz, 1H; —CH=
CH-Si), 6.89ppm (dd, J(HH)=102, 17.6Hz, 1H; B—CH=CH-);
BCNMR (75MHz, CDCl;, 25°C): =335 (Si—CH,CH;), 7.32 (Si—
CH,CH,), 27.39 (BOCH,CH,), 61.76 (BOCH,CH,), 134.47 (Si-CH=CH-),
147.07 (B—CH=CH-), 149.75 (Si-CH=CH-); C, to boron atom is not
observed in ®C NMR spectrum; "B NMR (96 MHz, CDCl, 25°C, BF;—
Et,0): 6=27.6ppm; *SiNMR (79 MHz, CDCl;, 25°C, TMS): 6=
—0.83 ppm; MS (EI): m/z (%): 237 (1) [M*-15], 223 (76), 209 (2), 195
(100), 181 (4), 167 (45), 153 (6), 139 (32), 109 (58), 81 (25), 59 (16); ele-
mental analysis caled (%) for C;;H,sBO,Si: C 61.90, H 9.99; found: C
61.99, H 10.12.
(1E,3E)-1-Tri(isopropylsilyl)-4-(1',3'-dioxaborinan-2'-yl) buta-1,3-diene
(6): Compound 6 was prepared from the appropriate starting materials
according to the above procedure for 1. The reaction afforded 6 as a pale
yellow liquid (0.232¢g, 0.788 mmol, 79% isolated yield). 'H NMR
(300 MHz, CDCl;, 25°C): 6=0.97-1.14 (m, 21H; Si-CH—- (CH;),), 1.97
(quintet, J(H.H)=5.5Hz, 2H; BOCH,CH,CH,0), 4.04 (t, JHH)=
5.5Hz, 4H; BOCH,), 545 (d, J(H,H)=17.6 Hz, 1H; B-CH=CH), 5.94
(d, J(HH)=184Hz, 1H; —CH=CH-Si), 6.62 (dd, J(HH)=10.7,
18.4 Hz, 1H; —~CH=CH-Si), 6.90 ppm (dd, J(H,H)=9.9, 16.8 Hz, 1H; B—
CH=CH-); "C NMR (75 MHz, CDCl,, 25°C): §=10.85 (Si—CH(CH,),),
18.58 (Si—CH(CH,),), 27.39 (BOCH,CH,), 61.78 (BOCH,CH,), 132.76
(Si—-CH=CH-), 147.84 (B—CH=CH-), 150.02 ppm (Si-CH=CH-); C, to
boron atom is not observed in *C NMR spectrum; "B NMR (96 MHz,
CDCl; 25°C, BF,;—E,0): 0=27.8 ppm; ¥SiNMR (79 MHz, CDCl,,
25°C, TMS): 6 =—-0.45 ppm; MS (EI): m/z (%): 251 (78) [M*—43], 223
(26), 209 (100), 193 (3), 181 (88), 165 (35), 153 (54), 139 (40), 123 (56),
111 (38), 95 (47), 81 (18), 59 (26); elemental analysis calcd (%) for
CysH3BO,Si: C 65.29, H 10.62; found: C 65.35, H 10.69.
(1E,3E)-1-(Dimethyl(tert-butyl)silyl)-4-(1',3’-dioxaborinan-2'-yl)buta-1,3-
diene (7): Compound 7 was prepared from the appropriate starting mate-
rials according to the above procedure for 1. The reaction afforded 7 as a
pale yellow liquid (0.204 g, 0.809 mmol, 81% isolated yield). "H NMR
(300 MHz, CDCl;, 25°C): 6=0.04 (s, 6H; Si(CH;),), 0.86 (s, 9H; SiC-
(CH;);), 1.97 (quintet, J(H,H)=5.5 Hz, 2H; BOCH,CH,CH,0), 4.04 (t,
J(H,H)=5.5Hz, 4H; BOCH,), 5.46 (d, J(H,H)=17.6 Hz, 1H; B—CH=
CH), 6.01 (d, J(HH)=18.4Hz, 1H; -CH=CH-Si), 6.55 (dd, J(H,H)=
10.2, 18.4 Hz, 1H; —CH=CH-Si), 6.76 ppm (dd, J(H.H)=9.9, 17.6 Hz,
1H; B-CH=CH-); "CNMR (75 MHz, CDCl;, 25°C): 6=-6.25 (Si—
(CHa;),), 16.65 (Si—C(CH,);), 26.40 (Si—C(CHs);) 27.38 (BOCH,CH,),
61.77 (BOCH,CH,), 13524 (Si—-CH=CH-), 147.02 (B—CH=CH-),
149.60 ppm (Si-CH=CH-); C, to boron atom is not observed in
BCNMR spectrum; "B NMR (96 MHz, CDCl; 25°C, BF;—Et,0): d=
27.7 ppm; ¥Si NMR (79 MHz, CDCl,, 25°C, TMS): 6=0.34 ppm; MS
(EI): m/z (%): 237 (2) [M*—15], 195 (100), 137 (81), 125 (19), 109 (7), 95
(34), 73 (11), 59 (11); elemental analysis calcd (%) for C;3H,sBO,Si: C
61.90, H 9.99; found: C 61.95, H 10.05.
(1E,3E)-1-(Dimethylphenylsilyl)-4-(1’,3'-dioxaborinan-2"-yl)buta-1,3-
diene (8): Compound 8 was prepared from the appropriate starting mate-
rials according to the above procedure for 1. The reaction afforded 8 as a
pale yellow liquid (0.215 g, 0.789 mmol, 79% isolated yield). '"H NMR
(300 MHz, CDCl,, 25°C): 6=0.034 (s, 6H; Si—(CHj3),), 1.97 (quintet, J-
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(H,H)=5.5Hz, 2H; BOCH,CH,CH,0), 4.04 (t, J(H,H)=5.5Hz, 4H;
BOCH,), 5.49 (d, J(HH)=17.6 Hz, 1H; B—-CH=CH), 6.12 (d, J(H,H) =
18.1 Hz, 1H; —CH=CH-Si), 6.63 (dd, J(H,H)=10.2, 17.9 Hz, 1H; ~CH=
CH-Si), 691 (dd, J(HH)=10.1, 17.6 Hz, 1H; B—-CH=CH-), 7.36 (m,
3H; m,p-C4Hs), 7.46 ppm (m, 2H; 0-C¢Hs); 3C NMR (75 MHz, CDCl;,
25°C): 0=-2.68 (Si—(CHj;),), 27.37 (BOCH,CH,), 61.77 (BOCH,CH,),
127.76 (C¢Hs), 128.99 (C.Hs), 133.84 (C¢Hs), 135.09 (Si—-CH=CH-),
147.37 (B—CH=CH-), 149.26 ppm (Si—-CH=CH-); C, to boron atom in
BCNMR spectrum; "B NMR (96 MHz, CDCl, 25°C, BF;-Et,0): 6=
27.7 ppm; ¥SiNMR (79 MHz, CDCl;, 25°C, TMS): 6 =-22 ppm; MS
(EX): m/z (%): 271 (6) [M*—1], 257 (36), 215 (19), 199 (33), 187 (26), 171
(41), 157 (65), 143 (65), 121 (36), 101 (100), 91 (38) 77 (50), 59 (15);
HRMS: m/z caled for CsH,BO,Si [M*]: 272.14038; found: 272.13880.
(1E,3E)-1-Trimethylsilyl-4-(1',3'-dioxaborinan-2'-yl)buta-1,3-diene 9):
MS (EI): m/z (%): 210 (3) [M™*], 195 (35) 167 (10), 153 (10), 137 (100),
125 (25), 109 (23), 95 (65), 59 (12).
(1E,3E)-1-Triethylgermyl-3-(1’,3'-dioxaborinan-2’-yl)buta-1,3-diene  (10):
MS (ED): m/z (%): 269 (100), 268 (78) [M*—CH,CH;], 239 (39), 213
(22), 183 (25), 155 (15), 133 (4), 101 (26), 75 (8).
(1E,3E)-1-(Triethylsilyl)-4-(1',3'-dioxaborolan-2'-yl)buta-1,3-diene  (11):
Complex I (0.015¢g, 0.02mmol), toluene (1 mL), triethylsilylacetylene
(0.14 g, 1 mmol) and 2-vinyl-1,3-dioxaborolane (0.29 g, 3 mmol) were
placed in a glass ampoule and heated under an argon atmosphere at
80°C for 18 h. Then the excess of borane and solvent were removed
under vacuum and the crude product was separated from the residues of
the catalyst and reactants using a column of silica gel (hexane/ethyl ace-
tate 1:1) to afford 11 as a pale yellow liquid (0.169 g, 0.709 mmol, 71 %
isolated yield). '"H NMR (300 MHz, CDCl,, 25°C): =0.61 (q, J(H,H) =
8.0 Hz, 6H; SiCH,CHj;), 0.93 (t, J(H,H)=8.0 Hz, 9H; SiCH,CH,), 4.24
(s, 4H; BO,(CH,)) 5.57 (d, J(H,H)=17.6 Hz, 1H; B—CH=CH-), 6.04 (d,
J(H,H)=18.5 Hz, 1H; Si-CH=CH), 6.60 (dd, J(H,H)=9.9, 18.5Hz, 1H;
—CH=CH-Si), 7.00 ppm (dd, J(H,H)=10.0, 17.6 Hz, 1H; -B—CH=CH);
BCNMR (75MHz, CDCl;, 25°C): 6=3.3 (Si(CH,CH,);), 7.31 (Si-
(CH,CH;);), 65.6 (BO,C,H,), 129.8 (CH=CH-C), 136.4 (CH=CHS]),
146.7 (B—CH=CH), 152.8 ppm (HC=CHSi); C, to boron atom is not ob-
served; "B NMR (96 MHz, CDCl; 25°C, BF;—Et,0): 6=6.6 ppm; MS
(EX): m/z (%): 209 (42) [M*—29], 181 (100), 165 (6) 153 (38), 137 (18),
109 (31), 81 (20), 67 (2); elemental analysis calcd (%) for C},H,;BO,Si: C
60.51, H 9.73; found: C 60.59, H 9.81.
(1E,3E)-1-Tri(isopropylsilyl)-4-(1',3"-dioxaborolan-2’-yl)buta-1,3-diene
(12): MS (EI): m/z (%): 252 (14) [M*-28], 237 (100), 209 (33), 195 (84),
181 (8) 167 (42), 151 (47), 137 (23), 123 (69), 109 (24), 95 (52), 81 (19), 67
(7), 59 (27).
(1E,3E)-1-(Dimethyl(ert-butyl)silyl)-4-(1',3'-dioxaborolan-2'-yl)buta-1,3-
diene (13): Compound 13 was prepared from the appropriate starting
materials according to the above procedure for 11. The reaction afforded
13 (0.176 g, 0.738 mmol, 74 % isolated yield) as a pale yellow liquid.
"H NMR (300 MHz, CDCl,, 25°C): 6=0.05 (s, 6H; Si(CH;),(C(CH,)5)),
0.87 (s, 9H; Si(CH;),(C(CH,);)), 425 (4H; s, BO,(CH,)) 5.58 (d, J-
(H,H)=17.6 Hz, 1H; B-CH=CH), 6.09 (d, J(H,H)=18.4 Hz, 1H; —Si—
CH=CH), 6.60 (dd, J(H,H)=10.7, 18.1 Hz, 1H; —CH=CH-Si), 7.00 ppm
(dd, J(H,H)=10.0, 17.6 Hz, 1H; B-CH=CH-); "CNMR (75 MHz,
CDCl;, 25°C): 0=16.65 (Si(CH;),(C(CHjs)3)), 26.4 (Si(CH;),(C(CHs)3)),
65.6 (BO,C,H,), 137.1 (CH=CHSi), 146.7 (B—CH=CH), 152.7 ppm (HC=
CHSi); C, to boron atom is not observed; "B NMR (96 MHz, CDCl,
25°C, BF;—E,0): 6=7.6 ppm; MS (EI): m/z (%): 181 (100) [M*-57],
137 (100), 95 (87), 73 (12), 57 (6); elemental analysis caled (%) for
C,H,;BO,Si: C 60.51, H 9.73; found: C 60.63, H 9.85.
(1E,3E)-1-(Dimethylphenylsilyl)-4-(1',3'-dioxaborolan-2"-yl) butadi-1,3-
ene (14): Compound 14 was prepared from the appropriate starting ma-
terials according to the above procedure for 11. The reaction afforded 14
(0.163 g, 0.631 mmol, 63% isolated yield) as a pale yellow liquid.
'HNMR (300 MHz, CDCl,, 25°C): 6=0.37 (s, 6H; Si(CH3),), 4.25 (s,
4H; BO,(CH,)) 5.60 (d, J(HH)=17.9 Hz, 1H; B-CH=CH-), 6.18 (d, J-
(H,H)=18.1 Hz, 1H; —Si—~CH=CH), 6.65 (dd, J(H,H)=9.2, 18.1 Hz, 1H;
—CH=CH-Si), 7.03 (dd, J(H,H)=9.9, 17.9 Hz, 1H; B—-CH=CH-), 7.38
(t, 1H; p-C¢Hs), 751 (t, 2H; m-C¢Hs), 7.60 ppm (d, 2H; 0-C4Hs);
BCNMR (75MHz, CDCl;, 25°C): 6=-2.76 (Si(CH;),(C,Hs)), 65.6
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(BO,C,H,), 127.8 (C¢Hs), 129.1 (C¢Hs), 133.8 (C4Hs), 137.0 (CH=CHSI),
146.9 (B—CH=CH), 152.3 ppm (HC=CHSi); C, to boron atom is not ob-
served; "B NMR (96 MHz, CDCl; 25°C, BF;—Et,0): 6=7.7 ppm; MS
(EI): m/z (%): 257 (3) [M*—1], 243 (35), 228 (3), 215 (58), 187 (100), 171
(64), 157 (87), 135 (30), 129 (93), 87 (56), 77 (46); elemental analysis
caled (%) for C;3H,BO,Si: C 65.12, H 7.42; found: C 65.00, H 7.51.
(1E,3E)-1-(1',3'-Dioxaborolan-2'-yl)-5-methyl-5-trimethylsiloxyhepta-1,3-
diene (15): MS (EI): m/z (%): 268 (9) [M*], 253 (7), 239 (90), 145 (18),
119 (12), 105 (8), 73 (100), 67 (5).
(1E,3E)-1-(1',3'-Dioxaborolan-2’-yl)-4-(1"-trimethylsiloxycyclohex-1"-
yl)buta-1,3-diene (16): MS (EI): m/z (%): 294 (3) [M™], 279 (7), 265 (1),
251 (29), 237 (11), 183 (7), 167 (13), 145 (10), 134 (15), 119 (29), 105 (16),
91 (58), 73 (100), 67 (7).
(1E,3E)-1-(1',3'-Dioxaborolan-2'-yl)-4-cyclohexylbuta-1,3-diene (17): MS
(EI): m/z (%): 206 (37) [M*], 191 (6), 177 (7), 163 (24), 150 (41), 121
(50), 105 (35), 93 (55), 79 (100), 67 (78), 53 (19).
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